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The one-electron density function for a group of atoms within the asymmetric region of a unit cell is 
represented by a finite multipole expansion of the charge density about each atomic center. Each atomic 
expansion is called a pseudoatom. If the pseudoatom charge density is effectively rigid with nuclear 
motion, then the model may be used for a static charge density analysis of X-ray diffraction data. A 
valence density multipole model for pseudoatoms is restricted to single exponential radial functions. 
The representation is rotationally invariant. The model may be used for determination of static charge 
physical properties as well as aspects of chemical bonding. These results can be a critical test of the X-ray 
diffraction experiment for the determination of electron density distributions. The pseudoatoms dis- 
cussed are primarily intended for crystals comprised of first and second-row atoms. The valence scat- 
tering model demands extensive data sets (probably at low temperatures) or an independent determina- 
tion of atomic positions and mean square amplitudes of vibration. 

Introduction 

Over the last few years several models for a quantitative 
determination of electron density distributions from 
X-ray diffraction data have been proposed. Dawson 
(1967) proposed an atom deformation model which 
was extended by Kurki-Suoni o (19.68). Hirshfeld ( 1971 ) 
and Harel & Hirshfeld (1975) have applied the model 
to electron density analysis of organic molecular crys- 
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tals. The model is a representation of the one-electron 
density function in the asymmetric part of the unit cell 
with a finite multipole expansion about the several 
atomic centers. 

In the present paper several facets of the multipole 
model are reviewed within the framework of the fun- 
damental theory for coherent X-ray scattering inten- 
sities. Several features of the model have been pub- 
lished in fragmentary reports by the author and by 
other workers. The effort here is an attempt to present 
the concept of pseudoatoms (or generalized X-ray 



566 E L E C T R O N  P O P U L A T I O N  A N A L Y S I S  W I T H  R I G I D  P S E U D O A T O M S  

scattering factors) in complete and unified form. De- 
tails of the pseudoatom model, which render intensity 
formulas tractable for electron density analysis, are 
developed for materials of low Z values (atoms with 
atomic number less than 18). A variety of static charge 
properties can be inferred from the model and com- 
pared to results from other experiments in chemical 
physics. Applications of the model to diffraction data 
and several restrictions are covered in the last sections 
of the paper. 

Fundamental considerations 

For an X-ray frequency far removed from an absorp- 
tion frequency of a molecule, the intensity for coherent, 
elastic scattering is proportional to [FI 2 where 

F(S,Q) = I •(r,Q) exp ( iS .  r )dr .  (1) 

Here S =2n(k-ko)/2, where k and k0 are unit vectors 
in the direction of scattered and incident radiation, 
respectively. If the angle between k and k0 is 20, then 
[SI = 4n sin 0/2. S is referred to as the Bragg vector. In 
(1), Q is a vector of all nuclear coordinates and Q(r, Q) 
is the one-electron density function for the molecule 
(charge density function) at some Q, 

o(r, Q)=S  ~v*(r, s l ,x2, . . .xN; Q) 

× ~(r, sl, x2 . . . .  , xn; Q)dxlv...  dx2dsl . (2) 

In (2), ~ is the wavefunction which solves the many- 
electron Schr6dinger equation in the potential of fixed 
nuclei (it is an adiabatic wavefunction) and is spanned 
by both space and spin coordinates of each electron. 
Note that (2) is averaged over all electrons but one and 
includes an average over the spin of the last electron. It is 
important to point out that the amplitude of scattering 
from (1) is for a time scale ~ 10-'7-10 -18 s. The basic 
theory for X-ray scattering on this time scale was 
reported by Waller & Hartree (1929) and is sufficiently 
accurate for further discussion. An understanding of 
the indistinguishability of electrons and the antisym- 
metric nature of ~ have come about since the Waller- 
Hartree theory, but these developments do not alter 
the basic validity of (1). The result, then, is that the 
short-time Bragg experiment is intimately related to 
the Fourier transform of a static charge density func- 
tion and is a one-electron expectation value. 

The actual observed intensity is on a long time scale 
(102-10 ° s) and is a statistical average over the states 
for Q. In this case the canonical ensemble average for 
coherent scattering is, 

Ic~ I F*(S, Q' ) t (Q'Q;  fl)F(S, Q)dQ 
/co(S) - - -  

f t(Q', Q; fl)dQ 

( Q ' = Q )  (3) 

where 

t (Q' ,Q;f l )=~ q~,,(Q') exp ( -  flH)q~n(Q) (4) 
n 

is the Dirac density matrix, tp,, are state functions for 
the nuclei, fl=l/kT, and H is the Hamiltonian for 
nuclear motion. In (3) Ic~ is the classical scattering of 
unpolarized light by an electron at a distance r from 
the observer as given by Thomson & Thomson (1933), 

I~l = ½(e 2/rmc2)2(1 + C O S  2 20)2. (5) 

The extension of Q(r, Q) from (2) to a giant molecule 
or small crystal lattice does not introduce anything 
fundamentally new to the theory. The dimensions of 
Q are dramatically increased and translational sym- 
metry comes into consideration. Equation (3) is an es- 
sentially correct theory of coherent X-ray scattering. 
The results above are taken from Born (1942-1943). 

The diffracted X-ray intensities from real crystals 
suffer absorption and some interaction between inci- 
dent and scattered radiation within the crystal. It will 
be assumed in this work that kinematic diffraction 
theory is applicable. Developments by Zachariasen 
(1967) and Becker & Coppens (1974) lend credence to 
the presumption that observed X-ray diffraction inten- 
sities for many crystals can be reduced to the moduli 
of kinematic structure factors. However, IFkinl 2 is not 
simply related to (3) by absorption, the volume of the 
crystal and a Lorentz factor. Born's (1942-1943) result 
for scattering by a molecule in equation (3) includes 
inelastic, coherent scattering, which in a crystal lattice 
is known as thermal diffuse scattering. For this case k 
differs from k0 by the momentum of a phonon or 
vibron, which is small compared to k0. An explicit de- 
composition of (3) into 'atomic' densities is given 
below with the aim of relating (3) to kinematic structure 
factors. 

Pseudoatoms in molecules and crystals 

In order to render (3) tractable for a crystallographic 
structure analysis, several approximations are usually 
made. One starts with Ico(S,Q) [i.e. F*(S,Q)F(S,Q) 
with F(S,Q) from (1)] as an expansion about Qe, the 
equilibrium nuclear configuration. If the nuclei move 
in a potential that is dominant in displacements from 
Qe that are quadratic, then the motion of the nuclei is 
amenable to a normal coordinate analysis and it is easy 
to solve for t (Q,Q;f l ) .  The harmonic oscillator ap- 
proximation alone, however, does not render equation 
(3) tractable for structure analysis. The charge density 
function in the asymmetric part of a unit cell can be 
decomposed as a superposition of pseudoatom charge 
densities centered about each nucleus. The second as- 
sumption is that the pseudoatoms are rigid in that 
they perfectly follow the motion of the nuclei upon 
which they are respectively centered. 

The harmonic motion and rigid pseudoatom approx- 
imations result in an explicit form for (3) as given by 
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Born (1942-1943), 

I¢o(S)--- ~ F;Fp,l-I exp [ -  ½(p~,¢)g/of z] (6) 
p , p '  j 

where gj is the thermal mean energy of a harmonic os- 
cillator with angular frequency o)j and the product 
overj  covers the N normal modes in the crystal lattice. 
Fp(S) can be written as 

Fp(S) =fp(S) exp ( iS.  Rp) (7) 

where Rp is a three-component vector of nucleus p for 
Q = Qe and fp(S) is the Fourier transform of the rigid 
pseudoatom about nucleus p. Note that rigid means 
thatfp(S) is not a function of Q. The other term in (6) is 

j 2 j 
(ep,.) 2ep,ep., l 

+ M;:-- ¢ 7J (8) 

where e~q is the component of e~/[/Mp, the amplitude 
vector of nucleus p with mass Mp for the vibration j', 
along the direction of S. The first two terms on the 
right-hand side of (8) give rise to the Bragg diffraction 
of rigid pseudoatoms that are uncorrelated in their 
motion and the third term, which represents correlation 
of the nuclear motion, gives rise to thermal diffuse 
scattering. In this paper it will be assumed that an ap- 
propriate correction can be made. With the long-range 
order of a real crystal the phonon-photon momentum 
exchange can preserve sufficient coherence to parti- 
cipate in the Bragg diffracted intensities. Borie (1970), 
among others, gives a rather good account of this phen- 
omenon. Approximate corrections of X-ray diffraction 
data for thermal diffuse scattering are possible (see for 
example Lucas, 1969). By neglecting or correcting for 
the cross term in (8), (6) can be factored into a structure 
factor equation where the components for the tensor 
of the mean square motions of nucleus p, Up, are 

Up.~O M ~ I ~ -  j , j  2 = ejep•epa/o9 J c~,fl = x ,y ,  z .  (9) 
dl 

Up to now, the pseudoatom or its Fourier transform, 
fp(S), has not been specified. Debye (1930) suggested 
that the pseudoatom be represented as an isolated 
atom. In the absence of fields external to the nucleus 
(a massive point charge) and the electrons the atomic 
charge density is necessarily spherically symmetrical. 
In this case fp(S) is fp(S), that is, the atomic scattering 
factor only depends on the magnitude of the Bragg 
vector but not on its direction. One need not be so 
restrictive in the representation of 0(r, Q) from (2) as a 
superposition of isolated atoms. It is possible to repre- 
sent each pseudoatom as a finite multipole expansion 
in the mean square sense and to determine the radial 
pseudoatom density functions from a known o(r, Q). 
For such an expansion the molecular expectation val- 
ues of several one-electron operators are correctly 
given. A general formalism for diatomic molecules has 
been reported (Stewart, Bentley & Goodman, 1975) 
and detailed examples for first-row atom systems have 

been given (Bentley & Stewart, 1975). In this work it is 
proved that the expectation, (g(ra)Pj(cos 0a)), is cor- 
rectly given for j <  J, where J is the largest multipole 
expansion on center a, regardless of the expansion on 
center b, and g(ra) is an arbitrary function of r, (scalar) 
for which the integral exists. Extension to polyatomic 
systems is apparently straightforward but at this junc- 
ture the author cannot establish uniqueness in the 
solution to the least-squares equations. The main point, 
however, is that Q(r, Q) can be represented by a small, 
multipole expansion about each nuclear center to 
rather high accuracy. The rigidity of such pseudoatoms 
remains to be studied and can be explored with a study 
of accurate charge density functions at several values 
of Q. 

If we assume that Bragg diffraction intensities can 
be properly corrected for thermal diffuse scattering, 
then we must yet be properly concerned with anharm- 
onic motion of the nuclei as well as deformation of the 
pseudoatoms. Low-frequency and acoustical modes in 
the lattice have good size anharmonic components, but 
in this case the pseudoatoms are only marginally de- 
formed (e.g. rigid-body motion of molecules in mol- 
ecular crystals). On the other hand, high-frequency 
modes such as bond stretches in molecular crystals are 
rather localized and can lead to sizable deformations 
of pseudoatom charge density functions. Librational 
motions, such as oscillations of methyl groups, are 
both anharmonic and deforming. The magnitude of 
these effects on Bragg intensities in X-ray diffraction 
needs to be determined. In any event, any serious de- 
velopment beyond the harmonic oscillator approxima- 
tion for the motion of nuclei must also include the de- 
pendence of pseudoatoms or generalized X-ray scatter- 
ing factors on the positions of the nuclei. The develop- 
ment below is a model based on the rigid-pseudoatom 
and harmonic-motion approximations for the analysis 
of X-ray diffraction data for charge density informa- 
tion. 

Restricted radial density basis functions 

The representation of the one-electron density function 
(2) as a superposition of rigid pseudoatoms should 
conform to several ground rules. The expansion must 
be rotationally invariant and the density function must 
obey classical laws of electrostatics. It is desirable, 
though not necessary, to use quantum chemical ex- 
perience in the choice of bases to span the pseudoatom 
on center p. 

Let the nuclear coordinates, Qe, be at equilibrium 
and define the row vector Q~ as (RI, R [ , . . .  R~, . . .  R~v) 
where R~ is (xp, yp, zp) for nucleus p of the N nuclei in 
the asymmetric part of the unit cell. The charge density 
function for the electrons is a finite multipole expansion 

Q(r, Qe)= 
e e o o 

C p l m B p t m ( r - R p ) +  C p z m B p z m ( r - R p  
p=l l=O = m=l 

(10) 
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where C~,. and C~., are electron population coeffi- 
cients. The basis functions B~tm and B~m are 

B~zm(rp) = (4n)- 1R~(r~,)p~.(cos 0p) cos m~pp 

B°~tm(rp)=(4rc)-XRpl(rp)P'l'(cos Op) sin m~ G (11) 

where R;~(ro) is a radial function for the /th-order 
multipole of pseudoatom p and PT'(cos 0~) is an as- 
sociated Lengendre function. Since the tesseral har- 

i- 

/cos m~0~ form a basis for the irre- monics PT'(cos 0)<sin m~0 
J 

ducible representation of the full rotation group, the 
expansion (10) is rotationally invariant and therefore 
independent of the choice of coordinate system. The 
radial functions for the pseudoatom, however, still 
need to be specified. 

In the formation of chemical bonds the charge den- 
sity near the nucleus of the atom is largely unaffected 
by the rest of the atomic environment. We shall assume 
that each pseudoatom (except hydrogen) has a 'core' 
invariant part and a deformable valence part. The core 
density function, therefore, will have a fixed electron 
population. The valence radial functions are approx- 
imated by single exponential type functions. Thus, 

and 
R~. 0(r~) = 2Zl~(rp) + C , . o r y  ° exp ( -  ~,r~) 

Rp,~(rp)=r~, p~ exp ( - ~ r ~ ) ,  l>_ 1 . (12) 

In (12)X~(rp) is a normalized ls spin restricted atomic 
orbital for the solution of the Hartree-Fock equations 
of motion for an isolated atom. For the valence radial 
functions, n~,z >_ l to ensure a proper solution of Pois- 
son's equation at rp=0  for a Coulomb potential. The 
'size' of the valence radial function is determined by ~p 
as well as npz. Quantum chemical estimates for the 
exponential parameter (ep = 2(~) for the first-row atoms 
have been reported by Hehre, Stewart & Pople (1969). 
The e~, however, can be made a variable parameter in 
the analysis of X-ray diffraction data (cf. Stewart, 
1973b). 

Several exainples of the basis functions (1 l) and (12) 
are displayed in Figs. 1 to 6 where e~, (3.90 bohr-~) is 
for a standard molecular nitrogen atom (Hehre, 
Stewart & Pople, 1969). The contours are in arbitrary 
units of electrons (bohr)-a; the box is 5 bohr or 2.65 A 
on each side. 

Extensive studies of single exponential radial func- 
tions as bases for mean-square fits to one-electron den- 
sity functions of diatomic molecules have been carried 
out by Bentley (1975). Several molecular averages are 
approximately (,-, 10%) reproduced by the superposi- 
tion of the pseudoatoms given in (12). Results of this 
work will be reported in a sequel to the present paper. 
The restricted radials proposed here are probably 
sufficient for an approximate static charge density 
model in the analysis of X-ray diffraction data. 

The Fourier transform of (11) is a basis for the rep- 
resentation of f ~ ( S ) i n  (7). The generalized X-ray 

scattering factor [the Fourier transform of (11)] is, 

f~z,,(S)=i~pz(S)P'~(~ls) cos rnos 
f~tm(S)=izfpz(S)P'~(~) sin rn¢~ (13) 

where i=  1/-  1, r/~ = cos 0~ and ~ are the angular com- 
ponents of the Brags vector, and 

Rp, z(rp)jz(srp)r~drp (14) f . l (S)  = o 

where j~(x) is an /th-order spherical Bessel function. 
The pseudoatom on centerp, therefore, has the Fourier 

/ /  

,,,i \ 

," ," ,' ," t' " {  ,",- . . . .  ", "', '~", ",", ", ', ', ',, 

Fig. 1. Electron density plot of  xr exp (-c~r) at z =  0. ~ =  3.9 
bohr  -1 - -  Positive density in steps of  10. - -  - -  - -  zero 
density. - . . . .  negative density in steps of  - 1 0 .  Con tours  
are propor t ional  to electrons bohr  -3. 

\ \ t I / / 1 . ~ \ \ \ 1 1  I / /  I 

, , , , ',, ', ', '._..;.,,~;",..' .x",',',,,,,',,.._.' . , ,  , ; , . , , , 

I ', ". " '-- '----- '-". ' ;~ " " \ C - - - - ' : - "  .'" ." 

.-" / ", I 
"" " ' ,  r 

",[  

Fig. 2. Electron density plot of  (x2--y 2) exp ( - ~ r )  at z=O. 
~--3"9 bohr  -1. Contours  are propor t iona l  to electrons 
bohr  -3. Solid and dashed lines are the same as for  Fig. 1. 
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transform, 

e e 0 0 f . ( S )  = Cpu , , fp , , , , (S )  + Cp, , , , fp , , , , (S  . 
l = 0  = m = l  

(15) 

Equations (14) and (15) can serve as a basis for electron 
population analysis of X-ray data. The valence model 
discussed below is restricted in that (12) is used for an 
evaluation of (14). 

Least-squares applications 

It need not be assumed that absolute structure factors 
are available. It will be assumed that an X-ray data set 
of structure factor moduli are proportional to an ab- 
solute set of IFnu[ with one scale factor. Extension to 
several data sets is not difficult. For atom p let 

E(x~,[3p) =exp  (2nin~x~) exp (-n~[3pH) (16) 

where xp is the time average nuclear position, H is the 
Bragg vector with components in Miller indices and [3~ 

\ \ \  i i  I 

\ i 
\ i 

\ i 
\ i 

\ i 

,-" _ _ 2 " - . ' -  .-..-'___ " ,  
' / "  _--~--- ' . - '2 ~- . ' - -_ ' - .  " ' .  ', 

I ' ' ' t ~ ' , ' " >  t '  " e ' ', ' ' ' , ', ', ' . "--.'-'A~-'-'-'.-'--.'--" , " l , 

, , ,  . .  - _ 2 2 5 < - ~ ~ :  .... ., , I 
, " . .  -- .-~ ~ . ~ . 2 : - - -  . ,' 

".  " - - 2 / P  ~ ' - :  . . . .  -" 

i \ 

/ \ 
/ \ 

i I l i  k k \ k  

Fig. 3. Electron density plot of  [z 2 -  (½)r'] exp ( - ~ )  at x = 0. 
~ = 3 - 9  bohr -~. Contours are proportional to electrons 
bohr -a. Solid and dashed lines are the same as for Fig. 1. 
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\ 
\ 
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. s  S~-  . / 
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\ ', \ ', t ; / ,' ,' / 
\ l 

\ / 

\ 7 _  

\ / 

. - -  . . . .  "-.k I 1""  .... "'.. 
. . - "  . -  . . . . . . .  ....x / . " .  . . . . . . . .  . " ' -  
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' ,  ' ,  " - .  . . , "  / ~ \ i I ', ', " , .  . . . .  . ' "  ,, ,, 

7 

\ / 
\ / 

\ / 

Fig. 5. Electron density plot of  x y z  exp (--~r)  in the plane x + y 
+z=31/3/0c,  ~ = 3 . 9  bohr -1. This plane is 0.705 A from the 
origin. Contours are proportional to electrons bohr -a. Solid 
and dashed lines are the same as for Fig. 1. 

\\\ I 

_ \ 

:i 
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i \ \  
\ 

Fig. 4. Electron density plot of  ( x  2 - 3 y 2 ) x  exp ( -  0or) at z = 0. 
~=3"9 bohr -1. Contours are proportional to electrons 
bohr -a. Solid and dashed lines are the same as for Fig. 1. 
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/ . ' , . , ' , "  ; , ~ l l  -." -,. . . . . . . . .  " , ," k.,,tttt . . . . . . .  . I 

/ ," / ' ', ." / ; i  " . . . .  

/ ,' ' " - - - "  . ' ' 1 \ \ ~  / \ \ / 

Fig. 6. Electron density plot of  (5z 2 -  3)z exp (--0or) at x =  0. 
~=3"9 bohr -x. Contours are proportional to electrons 
bohr -3. Solid and dashed lines are the same as for Fig. 1. 
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is the tensor for vibrational motion. The structure fac- 
tor model is, 

F~(H)= ~. ~f~(C,H)E(xp,[3.)  (17) 
sym p 

where C, x~ and [3~ are parameters in the model. Note 
that if x~ is the equilibrium position for atom p then 
(17) is a factor in (6). The sum over p is for the asym- 
metric unit and the sum over 'sym' extends over the 
symmetry operations in the unit cell. The vector array 
C in f~ needs to be specified. 

The core part off~ is held invariant to electron pop- 
ulation analysis and, for a first-row atom, is 

f~or~(H) = 2 R~o~(r)jo(Sr)r2dr (18) 
0 

where R~or,(r)=4~z2'2~ and 2% is the SCF ls orbital of 
the first-row atom. For  the evaluation of (18) S =  
2r~a0(I-VMH) m with a0=0.529177 /k and M is the 
metric tensor of the crystal. A possible extension is to 
add the anomalous dispersion terms A f '  and i A f "  to 
(18). The remaining terms in f~(C,H) may be assigned 
variable electron population parameters and comprise 
the valence scattering model. Thus, one may write 

L(C,  H) = kfco~(H) + CpoLo( H)  
+ ifi,~(H)[Cpa~Pl(cos On) cos ~o. 

-I-CplzPl(cos OH) sin ~0, + Cpl3P°(cos 0H)] 

-fp2(H)[Cp21P~(cos OH) cos 2q~n 
+ Cp22P~(cos 0H) sin 2q~. 
- t - C p 2 3 P l ( c o s  OH) COS ~ H  

+ Cp24P~(cos 0~) sin ~n 
+ Cp25P°(cos 0H)]+ . . . .  (19) 

The factor k in (19) is the usual overall scale factor. 
The angular functions [P~'(cos 0 n ) c o s  m~0u and 
P~'(cos OH)sin m~0n] for the Bragg vector must trans- 
form as the symmetry operations in the unit cell. For 
example, the odd orders (dipole and octupole func- 
tions), which are purely imaginary, must be combined 
with the sine terms of E(xp,[3p) in (16) for centro- 
symmetric structures. A systematic way to apply these 
functions to charge density analyses is to take them in 
groups of their order. For  an atom that has a site 
symmetry of 1, all three P~' and/or all five p~' and/or 

all seven Pg' must be included to ensure rotational in- 
variance. 

For  computational work it is more convenient to use 
a Cartesian representation of the tesseral harmonics in 
the expansion (19). A summary of these multipole 
basis functions up through fourth order is given in 
Table 1. [Octupole and hexadecapole bases were 
reported by Stewart (1973a), but are included here for 
convenience.] The site symmetry of the atom may force 
several components in (19) to have zero population. 
Symmetry constraints for dipoles and quadrupoles are 
given in Tables 2 and 3 respectively. Tabulations for 
third and fourth-order terms have been given by Stewart 
(1973a). Note that the dipole terms are apropos of 
pseudoatoms in a low site symmetry. For  organic 
molecular crystals, where often the approximate site 
symmetry is high, one can anticipate rather small con- 

Table 1. Multipole basis functions 

The q~,qy, q.. are direction cosines of the Bragg vector in an 
arbitrary orthogonal coordinate system. The P~' are unnor- 

realized associated Legendre functions. 
Tesseral Tesseral 

f(qx, qy, qz) harmonic f(q:,, qy, qz) harmonic 
q~ el cos (0 q2x - q~ (½)Pz 2 cos 2(0 
qy PI sin (0 qxqy (~)P~ sin 2(0 
q~ pO qxqz (½)Pz x cos (0 
q~ -6q~q~+ q~ (a--~-)P~4 cos 4(0 qyqz (~)PI sin (0 
(q~ _ qZy)q~qy (~-~)P~ sin 4(0 q~ _ ½ (~})po 

(qx - qy)q~(r-e)P3 cos 3(0 (q2x_3q~)q~qz (T~_~s)P~ cos 3( 0 2 3 2 ~ 3 
2 2 2 2 - p s  • (3q~ -qy)qyqz (3-~-~s)Pl sin 3(0 (3qx -q , )qy(~)  3 sm 3(0 

7 2 1 2 ( q~-- ) (q~, -- q~) (~-)Pa z cos 2(0 (q~ - q~)qz (~-~)P] cos 2(0 
(7q~- 1)q~q,. (~-)P] sin 2(0 q~qyq~ (3-~)P] sin 2(0 
(7q~-- 3)q~q~ (:k)Pl cos (0 (5q~- 1)qx (~z)p~ cos (0 
(7q~- 3)qyq~ ({)PI sin (0 (5q z -  1)q r Q])P] sin (0 
7 4 6 2-" s o q,-- q~*~- (~)P4 (5q~-3)q~ 2P ° 

Table 2. Non-vanishing atomic dipole components 
for  site symmetries 

The z axis is along the direction of maximum symmetry. 
Site symmetry 

2, 3, 4, 6 All other 
3m, 4/m crystallographic 

Components 1 m 6mm, ram2 point groups 
qx Cpll Cpn 0 0 
qy Cp12 Cp12 0 0 
qz Cp13 0 Cma 0 

Table 3. Non-vanishing atomic quadrupole components for  site symmetries 

The z axis is along the direction of maximum symmetry. 

Site symmetry 
~, ]gm, 3, 3m, 32 

2 222 4, 4mm, 7~, 4/m, 422 All other 
1 m mmm ~2m, 4/mmm, 6, 6mm crystallographic 

Components ]" 2/m mm2 ~, 6]m, 622, i~m2, 6/mmm point groups 
q2x - q~ Cp2x Cp21 Cp21 0 0 
q~qy Cp22 Cp22 0 0 0 
q~,q~ Cp23 0 0 0 0 
qyqz Cp24 0 0 0 0 
q~- ~ c,,2~ c,,~ c ~  c,,2~ o 
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tributions of the three dipole components to the valence 
charge density of the pseudoatoms. Quadrupole de- 
formation functions may plfiy a more prominent role. 
For carbon atoms, octupole deformation functions are 
probably most suitable for a valence charge density 
analysis. 

The Cpgm are electron population parameters to be 
determined by the method of least squares. The relative 
magnitudes of Cp~m determine the orientation of a par- 
ticular multipole for the pseudoatom. For example, an 
aromatic carbon atom has an approximate site sym- 
metry of 6m2. One would expect the dipole terms to 
have negligible population, one dominant quadrupole 
and one dominant octupole component. To establish 
this with the diffraction data one must include all three 
dipole functions in the analysis. If the magnitudes of 
Cpzm are small (of the order of the estimated standard 
deviation), they can properly be neglected. Analysis for 
the quadrupole deformation must include all five func- 
tions and for third-order tesserals all seven must be 
included. The final orientations of the octupole and 
quadrupole moments of the pseudoatoms are key fac- 
tors in a critical appraisal of the diffraction data for 
valence charge information. One way to visualize the 
final results is to construct an electron density map of 
the pseudoatom multipole(s) of interest. Stereo plots 
of these deformation functions for 2,4,6-triamino-s- 
triazine (Larson & Cromer, 1974) and for 1,1'-azobis- 
carbamide (Cromer & Larson, 1974) have been pub- 
lished. One can also rotate the results into a local co- 
ordinate system. For the example of an aromatic C 
atom one anticipates a single dominant quadrupole 
and octupole term. Let b~ be Cartesian basis functions 
of tesserals in the coordinate system for the least- 
squares analysis and let b~ be the set in the local co- 
ordinate system. Then, 

b~ = ~ b ~  (20) 

where ~z is a matrix of order (2l+ 1) and is explicitly 
given by Cromer, Larson & Stewart (1976). If Cpz is 
the vector of population coefficients from the least- 
squares result, 

C~lbt = 0pt(rp) = Cpzb t t '  , (21) 

where C;~ is the column vector of population coef- 
ficients in the local coordinate system. [The notation 
of superscript t is the transpose, or in the case of (21) 
a row vector.] From (20) and (21) it follows, 

c' , ,=[~l] ,c, , .  (22) 
Equation (22) can be a valuable aid in the interpretation 
of electron population results from X-ray diffraction 
data. 

The radial distribution scattering factors (14) can be 
analytically evaluated when the restricted radial func- 
tions (12) are used. An explicit form useful for computa- 
tion can be found in Watson (1966). The radial scattering 
factors when weighted by S 2, generally show maxima 
at larger sin 0/2 with increasing order of the tesseral 

harmonic. One such family of curves for a P atom was 
published by Stewart (1973a). This general feature by 
rather different radial scattering functions has been 
noted by Kurki-Suonio (1968). For valence-shell radial 
density functions of first-row atoms most of the radial 
scattering is within an Ewald sphere of 0"8 A_ -1 in 
sin 0/2 and the functions have maxima typically in the 
range 0.3-0.5 A -1 in sin 0/2. 

It is also possible and desirable to refine on the single 
exponential parameter, ~p in (12). In the normal equa- 
tions for least squares, then, 

l 
o o  

Ofp(S,~v) /~p=- _pr "pz+3 exp (-~prp)jz(Srp)drp (23) 
0 

where (23) follows from (14) and (12) by straight- 
forward differentiation of (14). Equation (23) is of the 
same family of hypergeometric functions as (14) and 
is computationally tractable. 

Interpretation of results 

The rigid pseudoatom model can be used to determine 
a number of one-electron molecular averages. Such 
physical properties are excellent criteria for a critical 
evaluation of the results. All such evaluations involve 
integration of a spatial operator and the density basis 
functions (11) over all space. The single exponential 
radial functions in (12) are not normalized. This is 
convenient for least-squares analysis in reciprocal 
space, particularly when the exponential parameter, 
%, is being refined. For the evaluation of molecular 
averages, however, it is convenient to convert the final 
Cp~,, parameters into more direct electron population 
parameters with the normalization factor of the radial 
functions (12), 

Ppzm=[(npz+2)I/(~,)"Pz+3]Cpzm . (24) 

The Ppzm are electron population parameters that one 
would get from the least-squares analysis had normal- 
ized radial valence functions been used. For absolute 
structure factors, the Pp00 are just the total charge of 
the valence electrons on the several p atoms in the cell. 
If a scale factor is varied in least squares in addition to 
C~nm, then Ppoo/k is the valence charge for atom p where 
k is the structure-factor scale factor. (As discussed 
below k only multiplies atoms or parts of atoms with 
fixed electron populations.) One critical test of the val- 
ence monopole density functions, then, is to see how 
closely the Ppoo/k sum to the total valence charge. 
Cromer & Larson (1974) and Larson & Cromer (1974) 
find agreement to within several percent. The elimina- 
tion of k for a constrained refinement is given below in 
the section on practical applications. 

The evaluation of other physical properties such as 
dipole moments and electric field gradients with the 
present model has been outlined by Stewart (1972). 
The expectations of irregular spherical harmonics, such 
as electric fields and field gradients, only included con- 
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tributions from local pseudoatoms. The contributions 
of neighboring pseudoatoms to field gradients are not 
negligible, however. The relevant penetration integrals 
for the potential, electric field, and electric field gradient 
from the bases (11) and (12) can be easily derived from 
the work of Pitzer, Kern & Lipscomb (1962). These 
expressions and the ones reported by Stewart (1972) 
can be used to estimate a variety of static charge pro- 
perties from the valence structure analysis of the X-ray 
data. Comparison of electric field gradients with an 
N Q R  experimental result is desirable. In this case the 
orientation of the field gradient from the X-ray analysis 
ought to agree with the NQR result, unless the atom 
has a very large r.m.s, amplitude of motion. The prin- 
cipal axis components and asymmetry parameter deter- 
mined by NQR may differ greatly from the X-ray result 
since the resonance experiment is sensitive to the en- 
vironment in the immediate neighborhood of the 
nucleus, whereas X-ray diffraction data generally can- 
not resolve fine details of charge density in regions 
<0"01/k  from the nucleus. 

Hydrogen atoms 

A rigid pseudoatom model for terminally bonded hy- 
drogen atoms is difficult to apply to X-ray diffraction 
data. A single monopole is rather inflexible and cannot 
adequately represent the true charge deformation near 
the proton. Although a single monopole scattering 
factor for H atoms gave chemically reasonable charges 
in earlier work (Stewart, 1970), it undoubtedly does 
not refine to the time-average proton position. The 
absence of a core structure for hydrogen atoms is the 
limiting feature. Determination of the proton position 
and simultaneously the dipole deformation terms from 
X-ray data alone is not feasible. An independent deter- 
mination of the time-average proton position or of the 
charge anisotropy is necessary. If the H atom charge 
is polarized along the covalent bond towards the 
heavier atom, a cylindrically symmetric model for the 
H pseudoatom is perhaps reasonable. Dipole deforma- 
tion scattering factors for terminally bonded H atoms 
can be extracted from model systems for which accur- 
ate wavefunctions exist. It would be of interest to see 
if such functions would promote refinement of the H 
atom onto the time-average proton position. But the 
electron population analysis would still be restricted to 
a single monopole function. It" the proton position and 
mean square amplitude of vibration were determined 
from neutron diffraction data, then one could use the 
X-ray data for analysis of several multipole population 
parameters for the pseudoatoms of hydrogen. For the 
present a rather limited scattering model for bonded 
hydrogens is recommended by employing a single 
monopole scattering factor. In previous work Stewart 
(1972) pointed out that inaccuracy of the proton posi- 
tion from refinement of X-ray diffraction data can be a 
severe limitation in the determination of physical pro- 
perties by X-ray diffraction. 

Practical considerations 

The valence electron scattering model discussed above 
can be used in an X-ray structure analysis under several 
conditions. In (19) k is the scale factor and is to multiply 
any scattering factor for which a fixed electron popula- 
tion is assumed. If the Cp~,, from (15) are set to zero for 
l > 1 and the Cp00 are fixed so that Pp00 from (24) are the 
neutral atomic valence electron number, then (17) is 
the standard structure factor model that is widely used 
in crystal structure analysis. 

Suppose E from (16) has been determined from neu- 
tron diffraction data and it is desired to use this infor- 
mation in (17). The parameters sought from the X-ray 
data are the scale factor k, and the electron population 
parameters Cp,,,. In this case the least-squares problem 
is linear in the parameter space. One may also choose 
to constrain the valence monopole population coef- 
ficients to sum to the product of the scale factor and 
total number of valence electrons. This constraint el- 
iminates one of the linear parameters in the least- 
squares problem. It is convenient to eliminate the scale 
factor by 

k= ~ ~ Ppoo/Fv(O00) (25) 
s y m  p 

where Pp00 is given in (24) and Fv(000) is the total 
number of valence electrons in the unit cell. With the 
constraint (25), the normal equations from minimiza- 
tion with respect to Cp00 will have the factors 

OFc/OCpoo = ~ [Np(np, o~p)fp.o(H) 
s y m  

+ ~ Nqnp,~p)fcore, q/F (000)]E(xp, [3p) 
q 

and 
Np(np, o~p)=(npo + 2)[/~, j'°+3 . (26) 

If the valence density monopole functions are relatively 
efficient in accounting for the total valence charge, then 
(25) and (26) should not severely alter the results from 
an unconstrained least-squares treatment. If it is also 
desired to refine the exponential parameters with the 
constraint (25) then minimization with respect to ap 
leads to the factor, 

OFc/O~xp= ~ [Cpoo(gpfpo + NJpo) 
s y m  

"t- ~_, CqooN'pfcore.q/Fv(OOO)]E(Xp, [3,) 
q 

N' ,=  -(np0 + 3) !/(~Y p°+4 (27) 

and f'p0 is given by (23). 
A further extension of the pseudoatom density model 

may be desired if E(xp, [~p) is also to be determined 
from X-ray diffraction data. Since the radial scattering 
factors for the several valence multipoles can extend 
out to ~0.8 /k -I  in sin 0/2, an extensive data set is 
needed. With inclusion of dipole terms, a correlation 
problem is introduced. The partial derivative of F~ 
with respect to a positional parameter generates a 
scattering function which is approximately proportion- 
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al tofp,  l (H)  for sin 0/2 up to 0.6 A -1. A weaker, but  
similar correlation occurs between thermal  parameters 
and fp, z(H). To estimate the correlation factor of  a 
dipole coefficient with a positional parameter,  the fol- 
lowing sums have been evaluated: 

al = ~ X'fp,2 2 1 exp ( -- 167r 2 Ux 2) 
x 

a2 = ~ 2 xfp,~fN exp ( -  16~z2Ux2) , (28) 
x 

aa = ~ x~f 2 exp ( -  16z~ 2 Ux2), 
X 

where fN is the total scattering factor for a nitrogen 
atom, fp, 1 is the radial  dipole scattering factor for the 
valence shell of  N, x is sin 0/2 and U is the mean square 
ampli tude of  vibrat ion of  the atom. For  a monatomic  
crystal, the estimated correlation coefficient, 

C(xmax, U ) =  - a2//~/~3 . (29) 

The estimates are listed in Table 4 as a function of  
m a x i m u m  sin 0/2 and of U. In order for the magni tude 
of  the correlation coefficients to be less than 0.7, one 
sees that the model  is very demanding on the size of  
the data set. The small correlation coefficients with 
smaller temperature factors further indicate that the 
valence model  is more  useful at low temperatures if  
one desires to determine both atomic positions and 
dipole populat ion coefficients with nearly independent  
precision estimates. 

The estimated correlation coefficients between a 
pseudoatom quadrupole  moment  and a thermal  par- 
ameter are tabulated in Table 5. The same expression 
(29) was used, but  fp,2 was substituted for fv ' 1 in (28). 
The trend is similar to, but decidedly less than the 
results in Table 4. For  small U values, however, the 
estimated correlation is comparable  to the dipole case. 
Correlat ion between the parameters of  E(xp, [3p) and 
populat ion coefficients for octupole or higher-order 
poles is considerably smaller than the examples given 
here. 

These estimated correlation coefficients can provide 
some guidance in the use of  the pseudoatom model  for 
a charge density analysis of  X-ray diffraction data. For  
example, with a set of  Cu K~ diffraction data and no 
independent  determinat ion of  atomic positions and 
ampli tudes of  vibration, it would be pointless to extend 
the valence model  beyond a monopole  populat ion anal- 
ysis. For  a very extensive data set [(sin O/2)max>O'8 
A-1 ] one might  anticipate an improvement  in the ac- 
curacy of  both atomic positions and thermal  param- 
eters. The valence scattering model  has sufficient flex- 
ibility to accommodate  much  of the atomic charge de- 
formation,  reflected by the medium-order  data, where- 
by the atomic positions and thermal  parameters  will 
have greater freedom to describe the nuclear properties 
of  the molecular  crystal. It is the high-order data which 
give the most accurate informat ion on both the time- 
average nuclear positions and the mean square dis- 
placements of  the atom. The reason for this is that the 

Table 4. Estimated correlation coefficient between atomic position parameter and pseudoatom dipole 
parameter as a function of mean square amplitude motion and data set size 

(sin 0/2)m.x (A-1) 
U(X 102 A s) 0"65 0"80 0"90 1"0 1"1 

0"63 --0"839 --0"717 --0"629 --0"573 --0"514 
1"27 --0"850 --0"746 --0"676 --0"635 --0"596 
1"90 --0"860 --0"776 --0"724 --0"697 --0"673 
2"53 --0"873 --0"806 --0"770 --0"753 --0"740 
3"17 --0"885 --0"834 --0"810 --0"800 --0"794 
3"80 --0"897 --0"859 --0"843 --0"838 --0"835 
4"43 --0"909 --0"880 --0"871 --0"868 --0"867 
5"07 --0"919 --0"899 --0"899 --0"892 
5"70 --0"928 --0"914 --0"911 --0"911 
6"33 --0"937 --0"927 --0"925 

1.2 1.3 1.4 

- 0.479 - 0.445 - 0.420 
-0-575 -0.557 -0.546 
-0.663 -0-655 -0.651 
-0.735 -0.733 -0.732 
-0.792 -0.791 
-0.835 

Table 5. Estimated correlation coefficient between atomic thermal parameters and pseudoatom quadrupole 
parameter as a function of mean square amplitude motion and data set size 

(sin O/2)max (A-') 

U ( x 102/~2) 0"65 0"80 0"90 1"0 1"1 1"2 1"3 
0"63 -0"873 -0"760 -0"670 -0"608 -0"537 -0"493 -0"445 
1"27 -0"873 -0"763 -0"679 -0"625 -0"566 -0"533 -0"500 
1"90 -0"874 -0"772 -0"698 -0"654 -0"610 -0"589 -0"570 
2"53 -0"877 -0"784 -0"723 -0"690 -0"661 -0"649 -0"640 
3"17 -0"882 -0"800 -0"752 -0"729 -0"711 -0"705 -0"702 
3"80 -0"887 -0"818 -0"782 -0"767 -0"757 -0"754 -0"753 
4"43 -0-894 -0"836 -0"811 -0-802 -0-797 -0"796 
5"07 -0"901 -0.855 -0"837 -0"832 -0"830 -0"829 
5"70 -0.908 -0"872 -0"861 -0"858 -0-857 
6.33 -0.915 -0-888 -0-881 -0-879 

1"4 
- 0-408 
- 0"479 
-0.560 
-0-636 
- 0.700 
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core electron structure of the atom at large sin 0/2 
makes the X-ray analysis become similar to the neutron 
diffraction model. 

Another possible application of the valence scatter- 
ing model is a joint refinement of X-ray and neutron 
data where x v and [3 v are taken as common to the two 
experimental results. Coppens (1971) has suggested 
such an approach with a 'double atom' model for the 
static charge density of a molecular crystal. In this 
model an L-shell monopole scattering factor is allowed 
to float off the core scattering position. For small 
shifts (,-, 0.01 A), the floated L-shell density function is 
essentially a small multipole expansion about the core 
scattering position. From an economical point of view 
of the fewest least-squares parameters for the best 
density representation, the double atom refinement 
may be preferable to the more formal model outlined 
here. 

It is important to recall that the amplitude of coher- 
ent X-ray scattering by a unit cell is decomposed into 
a sum of generalized X-ray scattering factors. If the 
scattering about one center is poorly represented, then 
a least-squares analysis for nearby pseudoatoms may 
lead to non-local behavior even though these centers 
are well spanned by the generalized X-ray scattering 
factors. An example is the present model of a single 
monopole for H atom scattering. Population coef- 
ficients for the quadrupole and/or octupole scattering 
factors centered on the atom to which the hydrogen is 
bonded, are forced to accommodate some of the pol- 
arized electron density about the proton. Such a de- 
localized pseudoatom is probably far from rigid in its 
response to nuclear motion so that the basic deconvo- 
lution approximation may seriously break down. In this 
case, the electron population parameters cannot be ex- 
pected to give reliable static-charge physical properties 
of the crystal system. 

Conclusion 

The valence scattering model is based on a multipole 
expansion similar to the proposal of Kurki-Suonio 
(1968). The radial functions, however, are restricted to 
single exponential functions. The multipole expansion 
on the several centers is a rotationally invariant repre- 
sentation of the static-charge density function and can 
efficiently span charge in chemical bonds. Application 
of the present model to electron population analysis 
demands extensive X-ray diffraction data, preferably 

low-temperature results, or an independent determina- 
tion of atomic positions and thermal parameters. The 
proposed electron density basis functions can be used 
to determine a variety of electrostatic physical proper- 
ties which serve as criteria for a critical evaluation of 
charge density results from X-ray diffraction data. 

Generous support by the Alfred P. Sloan Foundation 
is much appreciated. This research was supported by 
the National Science Foundation Grant MPS74-17592. 

References 

BECKER, P. J. & COPPENS, P. (1974). Acta Cryst. A30, 
129-147. 

BENTLEY, J. J. (1975). Ph.D. Thesis, Carnegie-Mellon Univ. 
BENTLEY, J. J. & STEWART, R. F. (1975). J. Chem. Phys. 63, 

3794-3803. 
BORIE, B. (1970). Acta Cryst. A26, 533-535. 
BORN, M. (1942-1943). Rep. Progr. Phys. 9, 294-333. 
COPPENS, P. (1971). Acta Cryst. B27, 1931-1938. 
CROMER, D. T. t% LARSON, A. C. (1974). J. Chem. Phys. 60, 

176-184. 
CROMER, D. T., LARSON, A. C. & STEWART, R. F. (19763. 

J. Chem. Phys. Submitted. 
DAWSON, B. (1967). Proc. Roy. Soc. A298, 255-263. 
DEBYE, P. (1930). Phys. Z. 31,419-428. 
HAREL, M. & HIRSHFELD, F. L. (1975). Acta Cryst. B31, 

162-172. 
HEHRE, W. J., STEWART, R. F. & POPLE, J. A. (1969). J. 

Chem. Phys. 51, 2657-2664. 
HIRSHEELD, F. L. (1971). Acta Cryst. B27, 769-781. 
KURKI-SUONIO, K. (1968). Acta Cryst. A24, 379-390. 
LARSON, A. C. & CROMER, D. T. (1974). J. Chem. Phys. 

6O, 185-192. 
LUCAS, B. W. (1969). Acta Cryst. A25, 627-631. 
PITZER, R. M., KERN, C. W. & LtPSCOMB, W. N. (1962). 

J. Chem. Phys. 37, 267-274. 
STEWART, R. F. (1970). J. Chem. Phys. 53, 205-213. 
STEWART, R. F. (1972). J. Chem. Phys. 57, 1664-1668. 
STEWART, R. F. (1973a). J. Chem. Phys. 58, 1668-1676. 
STEWART, R. F. (1973b). J. Chem. Phys. 58, 4430-4438. 
STEWART, R. F., BENTLEY, J. J. & GOODMAN, B. (1975). 

J. Chem. Phys. 63, 3786--3793. 
THOMSON, J. J. & THOMSOn, G. P. (1933). Conduction of 

Electricity Through Gasses, 3rd ed. Vol. II, pp. 257-260. 
Cambridge Univ. Press. 

WALLER, I. & HARTR_EE, D. R. (1929). Proc. Roy. Soc. A124, 
119-142. 

WATSON, G. N. (1966). A Treatise on the Theory of Bessel 
Functions, p. 385. Cambridge Univ. Press. 

ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558-564. 


